Puration . 2 1/ II-	5.	Seat Number :					
Duration: 2 ½ Hours		D217A2	BBM		Marks: 75		
Note: 1. All questions	are compulsory	/ .	81				
2. Figures to the	right indicate n	narks.					
3. Use of Simple	calculator is al	lowed.					
Q1) (A)Select the right $1)^{11}C_4 = $	answer from tg	e following N	Aultiple choice qu	estions. (Any 8)	8 M		
A) 320	B) 220	C) 330	D) 44	0 (CO1,R)			
2) If the payments are pa	aid at the beginni	ng of each pe	riod, it is known as	i an			
A) Illimediate Ar	inuity B)	life Annuity	C) Annuity C	artain D) Annuity D	$_{\text{DB}}(C \cap 2 \mid \mathbf{P} \mid)$		
3) The population of a increase per year?	city is 50 lakhs.	If it increase	es to 73 20 500 aft	er four years what wil	the (CO3,K)		
increase per year?			-	er rour years what wh	i de the rate of		
A) 10%	B) 15%	C) 5%	D) 209	% (CO3,R)			
4) The derivative of derivative	vative is called	2) 270	D) 20	70 (CO3,K)			
A) Anti-derivativ	e		B) secondary	derizzativa			
C) second order of	lerivative	(ת	Partial derivative	(CO2 D)			
5) The derivative of log >	w.r.t. x is	D)	i ai dai delivadive	(CO2,R)			
A) 1 / x	B) 1	(C)	0	D) 1/2 (CO2 D)			
6) The derivative of 4 ^x w.	r.t. x is	ر)	U	D) 1/2 (CO2,R)			
	4* log 4	$C)$ $A^{x} \log x$	D) 0 ((202 P.)			
7) If the total cost functio	m is C = 4 + 3	$v \perp v^2 \text{ find the }$	D) 0 (0	CO2,R)			
A) 68	B) 143	C) 54					
8) A square matrix whose	determinant val	U) 54	D) الا (ر	CO1,2 ,R)			
(a) Non-singular r	natrix (b) Si	uc is non-zer	o is called	(1) =			
9) For matrix multiplicat	ion the number	of columns	(c) Null matrix	(d) Row matrix (CO1,2 ,R)		
For matrix multiplicat second matrix.	ion, the number	of columns	of first matrix sho	uld be num	ber of rows of		
10) The number of ways	in which 3 hove	ni eroni (c)	an (d) square of ((CO1,R)			
10) The number of ways together are	in which 5 boy	s and 4 girls	can be arranged i	n a row so that all the	three boys are		
(a) 3! x 4!	(b) 5! x3!						
() - 1	(b) 3: X3:	(c) 7!	(d) 4! (CO2,R-))			
Q1) (B) State whether th	e following state	manta ana T	TO 1				
1) The derivative of a cons	stant number is	shients are 1	rue or False.		7 M		
2) The sum of principal an	d interest is call	always U.		(CO1,R	J.		
3) Simple interest is greate	er than compoun	d interest for	-11	(CO3,R	*		
4) Revenue = demand x p	rice	d interest for	all years.	(CO3,R	,		
5) BEP means where the o	demand curve co	ite the reven		(CO2,R	,		
6) When all the elements of	of the Matrix are	als the revent	e curve.	(CO2,R	,		
7) The value of 0! Is 1.	or the Matrix are	zero it is calle	ed the Square Matr				
8) C means contribution in	annuity			(CO1,R)			
9) RBM is better than FIR	amany.			(CO3,R)			
10) Dr. Albert has given the	e formula of the	formand tolele		(CO3 ,R			
great the	e formula of the	ioiward table	•	(CO1 ,R)		
Q2) (A) If a loan of Rs. 20	0000 taken for 4	years @ 12%	p.a.c.i. find the El	MI using (i) RBM (ii) F	IR methods		
* '							
				(CO1,3,A			
Q2) (B) If Rs. 20000 invest	ed for 4 years @	10% p.a.c.i.	find the amount if i	interest compounded (i)	annually.		
(ii) half yearly.		<u>.</u>	willount II I				
				(CO1,3,A	.) 7M		

Q2) (C) Find the value of (1) 7P4

(2) 12P3

(3)6C4

(4) 10C2

(CO1,2,A,R)

8M

Q2) (D) the total cost and total revenue function is $C = 20 - 3x^2$ and $5x + 6x^2$. Find TP,AP. (CO1,2,A) 7M

Q3) (A) Find A x B, if A = $\begin{pmatrix} 7 & 6 & 8 \\ 6 & 4 & 3 \\ 5 & 4 & 6 \end{pmatrix}$

 $\begin{bmatrix} -5 & 3 & 2 \\ 5 & -4 & 3 \\ 3 & 5 & -2 \end{bmatrix}$

find 2A + 3B + I.

Q3) (B) Expand $A = \begin{bmatrix} x & y & z \\ y & z & x \\ z & x & y \end{bmatrix}$

(CO2 ,R,U) 7M

(CO1,2,A,R)8M

Q3) (C) If $A = \begin{pmatrix} 5 & 9 \\ 4 & 5 \end{pmatrix}$ $B = \begin{pmatrix} 6 & 8 \\ 3 & 7 \end{pmatrix}$

(CO1,2,A)

Q3) (D) Solve the following equations simultaneously using Cramer's rule. x+2y+z=6, 2x-2y+z=1, -x+2y-2z=5

-5 _2 5

(CO1,2A)

Q4) (A) Find Dy /dx of Y = $(8x^2 + 4x + 5) / (x+4)$ by divide rule (CO1.2 ,A)

8M

Q4) (B) If the Revenue function of a commodity is given by $R = 5D^3 + 4D^2 + 10D$ find TR, AR, MR when D = 5. (CO1,2,AR)7M

OR

Q4) (C) Price (x) and Supply (Y) for a certain commodities in a retail shop is as follows. Estimate the supply when price was Rs. 15 using NFIF. (CO1,2,)

X	12	16	20	24	
Y	56	60	68	72	

Q4) (D) Find Newtons forward difference table.(CO1,2,A)

7M

X	10	20	30	40	50	60	-
Y	4000	3847	3704	3571	3448	3333	

Q5) Write Short Notes (Any 3)

15M

- 1) Types of interest (CO3,R)
- 2) Types of matrices (CO2,R)
- 3) Permutation and Combination (CO1,R)
- 4) Formulas of annuities and EMI's (CO3,U,R)
- 5) Formulas of cost and revenue functions (CO2,R)

XXXXXXXXXXXX