(2½ Hours)

[Total Marks: 75]

15

- N. B.: (1) All questions are compulsory.
 - (2) Make suitable assumptions wherever necessary and state the assumptions made.
 - (3) Answers to the <u>same question</u> must be <u>written together</u>.
 - (4) Numbers to the <u>right</u> indicate <u>marks</u>.
 - (5) Draw neat labeled diagrams wherever necessary.
 - (6) Use of Non-programmable calculators is allowed.

1.	Attempt <u>any three</u> of the following:		
a.	Convert		
	i)	$(100011)_2 = (?)_{10}$	2
	ii)	$(2F)_{16} = (?)_{10}$	2
	iii)	$(011000)_2 = (?)_8$	1
b.	Convert		Ç) T
	i)	(62) ₁₀ = (?) _{excess3}	2
	ii)	(577) ₁₀ = (?) _{bcd}	2
	iii)	$(100110000111)_{bcd} = (?)_{10}$	1
c.	Explain with an example to steps to find a two's complement of a number and write		
	the rules of two's complement subtraction in binary number system.		
d.	Solve :		
	i)	$(1000100)_2 + (10010101)_2 = (?)_2$	2
	ii)	$(10101010)_2$ - $(10100010)_2$ = (?) ₂ (use direct method)	3
e.	Solve:		
	i)	$(122)_{10} = ()_2 = (?)_8$	3
	ii)	$(110101001)_2 = (?)_{16}$	2
f.	Solve:		
	i)	$(AFD1)_{16} + (1292)_{16} = (?)_{16}$	2
	ii)	$(AFD1)_{16} - (129A)_{16} = (?)_{16}$	3
2.		t <u>any three</u> of the following:	15
a.	Describe the NAND and the OR gate with the symbol, the logical statement, the		
	Boolean	expression and its logical circuit diagram	
b.	State and proof the commutative and associative law in Boolean algebra.		
c.	Prove the following		
	i)	$A + \bar{A}B = \bar{A} + B$	
		$(\bar{A} + B)\bar{A}\bar{B}\bar{C} = \overline{A + B + C}$	
d.	Simplify	the expression and draw circuit diagram	
9		(X, Y, Y, Z,	
e. f.		SOP expression using Kmaps $F(A,B,C,D) = \Sigma m (1,3,4,5,7,9,11,13,15)$	
*•		POS expression using Kmaps	

- 3. Attempt <u>any three</u> of the following:
- a. Design a 4 -bit full adder using 3 Full adders.
- b. With the help of K-Maps build a 2- bit half adder and describe it working.
- c. Explain with an example code conversion from binary to gray.

 $F(A,B,C,D) = \pi M(4,6,8,9,10,12,13,14) + d(0,2,5)$

Paper / Subject Code: 82302 / Digital Electronics.

d.	Design a combinational circuit for the following description. The circuit had 4 inputs
	and 2 output. One of the outputs is true if the major inputs are true, the other
	output is true if there is a tie between the 4 input.
e.	Describe the working of a comparator.
f.	Describe the working a BCD subtractor.
4.	Attempt <u>any three</u> of the following:
a.	Draw the logical circuit diagram and describe the working of a 4:2 decoder.
b.	Draw the logical circuit diagram and describe the working 4:1 multiplexer using 2:1 multiplexers.
c.	Difference between multiplexer and demultiplexer,
d.	Describe with a truth table the working of D-flip flop.
e.	Describe with a truth table the working of T-flip flop.
f.	Describe the working of the JK Flip Flop.
5.	Attempt <u>any three</u> of the following:
a.	Short note on synchronous counters.
b.	Describe working of 4 bit binary counter
c.	Explain the terms bushing and perset of a counter
d.	Write a short note on Bidirectional shift registers.
e.	Describe the working of the Johnson counter.
ſ.	What are parallel and shift registers? Explain
5-10-64	Tribe are paramet and strict registers: Explain