TIME: 2:30 HRS

G515NCLDS.

Seat No.

MARKS:75

Note: 1) All Question are Compulsory

- 2) All Questions Carry Equal Marks
- 3) Figures to the Right side Indicate Marks.

Q1.A) Attempt any 3 (each of 5 marks)

1. Find AxB, BxA if $B = \{1,2,3,5\}$

 $A = \{4,5,8\}$ 2. Prove that for any 3 sets A,B and C $A \times (B \cup C) = (A \times B) \cup (A \cup C)$

3. Write algebraic proof of AU(B-A) = AUB

- 4. Prove (A-B) \cup (A \cap B) = A
- 5. Prove

 $(A-B) \cup (B-A) = (A \cup B) - (A \cap B)$

- 6. Write Principle of Duality.
- Q.2 Attempt any 3 (each of 5 marks)

1. Let $A = \{0,1,2,3,4\}$ and defined a function $f: A \rightarrow A$ such that for all $X \in A$ $f(x) = (x^3 + 2x + 4) \mod A$ 5 find the co domain.

2. If $A = \{0,1,2,3,4\}$ and diffuse function $f: A \rightarrow A$ and $g: A \rightarrow A$ such that for each $X \in A$ $F(x) = (X+4)^2 \text{ Mod } 4$ $g(x) = X^2 + 3x + 1 \mod 5$ Does f=g?

- 3. If $f(x) = (2x-5)^{1/2}$ and $g(x) = 5X^2 3$ find the composite function defined by (fog) (x) and (gof) (x) verify whether (fog) (x) = (got) (x)
- Determine whether this function is objective from R to R
 - F(x) = 2x + 1i)
 - $F(x) = x^2 + 1$ ii)
- Verify whether the function d: $Z \rightarrow Z$ defined as f(x) = 4x-1 for all $X \in Zp$ is
 - a) One to One

- b) onto
- Determine whether this functions form z to z is one to one
 - 1. F(n) = n-1
 - 2. $F(n) = n^2 + 1$
- Q3. Attempt any 3 (each of 5 marks)

let $R = \{<1,2>,<1,3>,<1,4>,<2,3>,<3,1>,3,3>,<4,2>\}$ 1. Lef $A=\{1,2,3,4\}$ {<1,3>,<2,2>,<3,2>,<4,2>} find.

- Ro(sos) i)
- Is Ros = SoR? (ii)
- 2. If $A = \{1,2,3\}$ and $R = \{c,1\}$, (1,2), (2,1), (2,2), (2,3), (3,1), (3,3>4) find m(R) and (MR) $\}^2$
- 3. If $A = \{1,2,3\}$ and $B = \{4,5,6\}$ and $R_1 = (1,1)$. (2,2), (3,2), (3,3)} and $R_2 = \{(4,4),(5,5),(6,6)\}$ find the matrix $m(R_1) \times m(R_2)$.
- Let $A=\{1,2,3\}$ and R be a relation on a defined by $XRY \le x \le y$ find R and draw its diagraph. 4.
- Find matrix and diagraph of a relation $R=\{(x,y)/xRy \text{ is } 1x-y1=1\}$ on a set $A=\{1,2,3,4\}$.
- Let $A=\{1,2,3\}$ the relation R=AxA is R transitive? Jastify.
- Attempt any 3 (each of 5 marks) O.4.

Let $A=\{1,2,3,4,5,6\}$ let $R=\{(a,b)\}$ a \cong b mod 2} Is R an equivalence relation.

- Let R be a relation on Z, defined by xRy its 5x+6y is devisible by 12, for $x,y\in z$ show that R is an equiralence relation on Z.
- Let $A=\{1,2,3,4\}$ and $R=\{<1,2>,<2,3>,<3,4>\}$ find R* transitive clouser and draw its graph.
- Let $A = \{1,2,3,4\}$ and $R = \{<1,2>, <2,1>,<2,3>,<3,4>\}$ find R^* using warshalls algoritm.
- 5. Let $A = \{1,2,3,4,5\}$ and R be a partial order relation defined as. $R = \{(1,1)(2,2),(3,3),(4,4),(5,5),(5,5),($ (5,3),(3,1),(4,3),(4,2),(4,1),(2,1) find lass diagram of paset A.

15

15

15M

15M

- Q5. Attempt any 3 (each of 5 marks)
 - 1. Find the relation R defined on set $\Lambda = \{2,3,4,5,6,7,8\}$ AS $xRy \le x/y$.
 - 2. If A={1,2,3,4-20} and R is defined as $\forall x,y \in A$, $xRy \iff \frac{Y}{X} Y$ find distinct equiralence classes.
 - 3. Determine the value of i) (3.5)
- ii) (-2,4)
- iii) (3,143)
- 4. Find inverse of function δ (x)=(3x+2)/(x-1)
- 5. Find f^1 if f(x)=n(x-2).
- 6. Determine whether $f: R \to R$ are on to if $\delta(x) = x+1$

******* BEST OF LUCK ********