Duration: 2.5 Hrs.

G312NDLA

Marks:- 75

Note:- 1) All questions are compulsory

- 2) All questions carry equal marks
- 3) Figures to the right indicate maximum marks.

Q.1) Attempt Any 3

(15 M)

- 1) Write short note on number system and give its bases.
- 2) Convert the binary number 1011.01 into its decimal equivalent.
- 3) Convert the octal number (365.25)₈ into its equivalent decimal number.
- 4) Convert (0.6234)₁₀ into its equivalent octal number
- 5) Convert (85.63)₁₀ into its equivalent binary number.
- 6) Convert (2003.31)₁₀ into its equivalent hex number

Q.2) Attempt any 3

(15 M)

- 1) Find out 2's complement of following numbers
 - a) (110110)₂
 - b) (010101)₂.
- 2) Write the truth table of following.
 - 1) Three input Ex-OR gate.
 - 2) Three input Ex-NOR gate.
- 3) Write the expression for F for the circuit shown in figure

- 4) Draw the symbol, truth table of
 - A) NAND gate
 - B) Ex-OR gate
- 5) Write the output equation for following and prepare the truth table of F1 for Possible values of X, Y & Z refer the fig.

6) Write application of universal gates.

(15 M)

1) Derive the SOP of the following expression using K- maps and draw the logical diagram.

$$F(W,X,Y,Z) = \sum m (0,2,5,8,10,13)$$

2) Simplify the following expression given below using K-map. Draw its simplified diagram:

$$Y = \sum m(1,3,7,11,15) + d(0,25)$$

3) Represent the following canonical POS Equation on the karnaugh map.

4) Obtain POS expression for the following function and implement it using gates.

$$F(P,Q,R,S) = (1,3,4,5,6,7,12,13)$$

- 5) Write a note on: Duality theorem.
- 6) Explain the properties of Boolean Algebra.

Q.4) Attempt Any 3:-

(15 M)

- 1) What is full adder? Draw logic circuit diagram and explain it.
- 2) Describe half subtract with help of circuit diagram and truth table.
- 3) Implement 4 bit adder using parallel adder.
- 4) Design two bit magnitude comparator give its truth table.
- 5) Obtain an 8:1 multiplexer using two 4:1 multiplexer.
- 6) Difference between multiplexer and demultiplexer.

Q.5) Attempt Any 3:-

(15 M)

- 1) Explain the conversion of hex to binary.
- 2) Write short note on Octal number system.
- 3) Using don't care condition find reduced SOP equation and draw the circuit diagram using basic gates. $F(P,Q,R,S) = \sum_{i=1}^{n} m(1,2,3,6,12,14) + d(0,11,13)$
- 4) Write companion between encoder and decoder.
- 5) Design two bit magnitude comparator.
- 6) Draw the logical circuit diagram and describe the working of 8:3 encoder.

XXXXX