DLA

DURATION: - 2½ hrs 712021223 Note: - (1) All questions are compulsory. (2) All questions carry equal marks. (3) Figures to the right indicates full marks		MARKS):- 75
0.1	Attempt Any 3		15M
	Draw Truth-table of basic gates with its symbol and	COI-U	
	logical Expression		
b)	Write the rule of binary addition, binary	CO1-U	
	multiplication, and subtraction		
c)	Convert the following number system	CO1-U	
	i) $(105)_{10} = (\underline{\hspace{1cm}})_2$		
	ii) $(11011)_2 = (_)_{10}$		
d)	Draw block diagram of fulladder, with its Truth-table	CO2-R	
	and logical implementation		
	Explain two bit comparator with Truth-table	CO2-R	
f)	Explain 3:8 decoder with Truth-table	CO2-R	
0.2	Attempt Any 3		15M
_			13111
a)	Solve using k map $y = \sum m (0,1,3,5)$	CO1-R	13111
a) b)	Solve using k map $y = \sum m$ (0,1,3,5) What is universal Gate, why it is called so	CO1-R CO2-U	13111
a)b)c)	Solve using k map $y = \sum m$ (0,1,3,5) What is universal Gate, why it is called so Implement basic gate using NOR gate		15.01
a)b)c)	Solve using k map $y = \sum m$ (0,1,3,5) What is universal Gate, why it is called so	CO2-U	13141
a)b)c)d)	Solve using k map $y = \sum m$ (0,1,3,5) What is universal Gate, why it is called so Implement basic gate using NOR gate Design 1:8 Demultiplexor with its Truth-table and implementation	CO2-U CO2-R	ISIN
a) b) c) d)	Solve using k map $y = \sum m$ (0,1,3,5) What is universal Gate, why it is called so Implement basic gate using NOR gate Design 1:8 Demultiplexor with its Truth-table and	CO2-U CO2-R CO2-R	ISM
a)b)c)d)e)f)	Solve using k map $y = \sum m$ (0,1,3,5) What is universal Gate, why it is called so Implement basic gate using NOR gate Design 1:8 Demultiplexor with its Truth-table and implementation Design and implement Binary to Gray code convertor Compare combinational and sequential logic circuit	CO2-U CO2-R CO2-R	
a) b) c) d) e) f)	Solve using k map $y = \sum m$ (0,1,3,5) What is universal Gate, why it is called so Implement basic gate using NOR gate Design 1:8 Demultiplexor with its Truth-table and implementation Design and implement Binary to Gray code convertor Compare combinational and sequential logic circuit Attempt Any 3	CO2-U CO2-R CO2-R	15M
a) b) c) d) e) f)	Solve using k map $y = \sum m$ (0,1,3,5) What is universal Gate, why it is called so Implement basic gate using NOR gate Design 1:8 Demultiplexor with its Truth-table and implementation Design and implement Binary to Gray code convertor Compare combinational and sequential logic circuit Attempt Any 3 Explain SISO shift register	CO2-U CO2-R CO2-R CO4-R CO3-R	
a) b) c) d) e) f) Q.3) a) b)	Solve using k map $y = \sum m$ (0,1,3,5) What is universal Gate, why it is called so Implement basic gate using NOR gate Design 1:8 Demultiplexor with its Truth-table and implementation Design and implement Binary to Gray code convertor Compare combinational and sequential logic circuit Attempt Any 3 Explain SISO shift register Explain with block diagram J-K flip-flop	CO2-U CO2-R CO2-R CO4-R CO3-R	
a) b) c) d) e) f) Q.3) a) b)	Solve using k map $y = \sum m$ (0,1,3,5) What is universal Gate, why it is called so Implement basic gate using NOR gate Design 1:8 Demultiplexor with its Truth-table and implementation Design and implement Binary to Gray code convertor Compare combinational and sequential logic circuit Attempt Any 3 Explain SISO shift register Explain with block diagram J-K flip-flop Write the Expression in standard SOP form;	CO2-U CO2-R CO2-R CO4-R CO3-R CO4-U CO4-U	
a) b) c) d) e) f) Q.3) a) b) c)	Solve using k map $y = \sum m$ (0,1,3,5) What is universal Gate, why it is called so Implement basic gate using NOR gate Design 1:8 Demultiplexor with its Truth-table and implementation Design and implement Binary to Gray code convertor Compare combinational and sequential logic circuit Attempt Any 3 Explain SISO shift register Explain with block diagram J-K flip-flop	CO2-U CO2-R CO2-R CO4-R CO3-R CO4-U CO4-U	

A	В	С	у
$\frac{\Lambda}{0}$	0	0	0
$\frac{0}{0}$	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

		CO2-U	
e)	Implement following expression using basic gate		
-,	i) $y = \bar{A}BC + \bar{A}B\bar{C} + ABC + A\bar{B}C$		
	ii) $v = A\bar{B} + ABC + \bar{A}\bar{B}\bar{C} + ACD$	COSTI	
fì	Write a short notes on Binary Anathematic and logic	CO5-U	
-)	unit	1534	
Q.4)	Attempt Any 3	15M CO1-U	
a)	Data bits 1011 have to be transmitted. Construct the	C01-0	
•••)	odd parity 7 bit hamming code for given data	CO1.11	
b)	Explain multiplexer with its type	CO3-U	
c)	Explain binary multiplication and division Algorithm	CO5-U	
4) C)	State and proof Demorgan's theorem	CO2-R	
e)	Design 4 bit ripple counter	CO3-R	
f)	- 1 11 A Large our up counter	1534	
,	Attempt Any 3	15M	
Q.5)	Draw and explain the block diagram of combination	CO2-R	
4)	of circuit, Enlist example	50. P	
h)	Proof the following using basic boolean's law	CO1-R	
D)	i) $A + AB = A$ ii) $A + \overline{A}B = A + B$		
c)	Compare Encoder and Decoder	CO4-U	
d)	True 1 "Error Detection & Hrror	CO2-U	
u	Correction"		
Δ`	Draw block diagram of 4:1mux with Truth-table and	CO3-R	
C ,	logical implementation		
f	= 1 · (D 1 1?	CO1-U	
S .	**************************************		