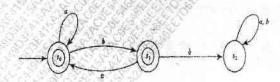
Q.P. Code: 781300

		(2½ Hours)	[Total Marks: 75]	
N.B.	(1) All	questions are compulsory.		
	(2) Fig	ares to the right indicate marks.		
1. Ai		ne following questions	(15 M)	
(\mathbf{a})	Cho	ose the best choice for the following questions:	(5 M)	
	(i)	If f_1 and f_2 are two functions from R to R suc $f_2(x) = x - x^2$, then $(f_1.f_2)(x)$ is given by (a) $x^3 + x^4$ (b) $x^3 - x^4$ (c) $x^4 + x^5$ (d) None of these	h that $T_1(x) = x^-$ and	
	Gil	(ii) Which of the following is true about the poset (Z ⁺ ,)?		
	(11)	(a) Zero is the least element (b) One is the least element (c) There is no least element (d) None of the	east element	
	(iii)	A class contains 10 students with 6 men and 4 women. Number of ways to select a 4-member committee with 2 men and 2 women is given by (a) 60 (b) 70 (c) 80 (d) 90		
	(iv)	Suppose a bookcase shelf has 5 History texts, 3 Sociology texts, 6 Anthropology texts, and 4 Psychology texts. Number of ways a student can choose one text of each type is given by (a) 360 (b) 460 (c) 560 (d) 660		
	(v)	A loop is an edge connecting (a) a vertex with itself (b) two distinct	et vertices	
		(c) no vertices (d) three distir	nct vertices	
(b) Filli	n the blanks for the following questions:	(5M)	
	(i)	A function f is said to be strictly if f y in the domain of f.	$f(x) \ge f(y)$ for any x and	
	(ii)	a ∈.A.		
	(iii)	The Gödel number of a word $w = a_3 a_2 a_1 a_3 a_4$ is		
	(iv)	(iv) Suppose that a procedure can be broken down into two tasks. If there are n ₁ ways to do the first task and n ₂ ways to do the second task after the first task has been done, then there are ways to do the procedure.		
	(v)	Let G be a directed graph and v be a vertex of G. beginning at v is called	The number of edges	
(c)) Ans	wer the following questions:	(5M)	
	(i)	Why is f, defined by $f(x) = 1/(x+1)$, not a function f	` '	
	(ii)	Let $\{a_n\}$ be a sequence that satisfies the recurrence $n = 1, 2, 3, \ldots$ and suppose that $a_0 = 2$. What are a_1 a	elation $a_n = a_{n-1} + 2$ for	

- (iii) State inclusion exclusion principle.
- (iv) Define a regular grammar.
- (v) Define a directed graph.

2. Answer any three of the following:

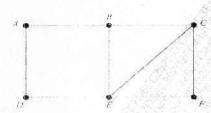

(15 M)

- (a) Find the domain and range of the following functions:
 - i) the function that assigns to each nonnegative integer its last digit.
 - ii) the function that assigns to a bit string the number of bits in the string.
- (b) Determine whether the function f from R to R defined by f(x) = x 2 is bijective.
- Suppose that R is the relation on the set of strings of English letters such that aRb if and only if I(a) = I(b), where I(x) is the length of the string x. Is R an equivalence relation? Justify your answer.
- (d) Define Lattice. Determine whether the posets ({1, 2, 3, 4, 5}, |) and ({1, 2, 4, 8, 16}, |) are lattices.
- (e) Solve the recurrence relation $a_n = 5a_{n-1} 6a_{n-2}$ for $n \ge 2$, $a_0 = 1$, $a_1 = 0$.
- (f) Define Fibonacci numbers. Formulate a recurrence relation for Fibonacci numbers.

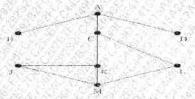
3. Answer any three of the following:

(15 M)

- (a) How many ways are there for eight men and five women to stand in a line so that no two women stand next to each other?
- (b) State and prove Vandermonde's identity.
- (c) State Pigeonhole principle. From any set of 13 integers, prove that there will be at least one pair which leaves the same remainder when divisible by 12.
- (d) How many integers between 1 and 600 (both inclusive) are not divisible by both 3 and 5?
- (e) Define a language L over an alphabet A. Let $A = \{a, b, c\}$. Find L* where language $L = \{b^2\}$.
- (f) Determine whether or not the automaton M in the following figure accepts the words: $w_1 = ababba$; $w_2 = baab$; $w_3 = \lambda$ the empty word.

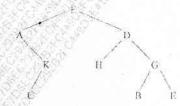


4. Answer any three of the following:


(15 M)

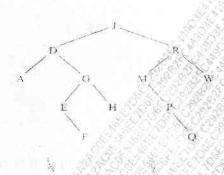
(a) Consider the graph G in the following. Find (i) $\operatorname{diam}(G)$, the diameter of G, (ii) d(A,F), the distance from A to F.

3



(b) Consider the graph G in the following figure (where the vertices are ordered alphabetically). (i) Find the adjacency structure of G. (ii) Find the order in which the vertices of G are processed using a depth-first search algorithm beginning at vertex A.

(c) Draw the graph G corresponding to each adjacency matrix:


- (d) Consider the binary tree T in the following figure. (i) Find the depth d of T.
 - (ii) Traverse T using the post-order algorithm.

- (c) Suppose a graph G contains two distinct paths from a vertex u to a vertex v. Show that G has a cycle.
- (f) Consider the binary tree T in the following figure. Describe the tree T after (i) the node M and (ii) the node D are deleted.

Q.P. Code: 781300

4

5. Answer any three of the following:

(15 M)

- (a) Draw the Hasse diagram for divisibility on the set $\{1, 2, 3, 5, 7, 11, 13\}$.
- (b) How many solutions does the equation x+y+z=11 have, where x, y and z are non-negative integers with $x \le 3$, $y \le 4$ and $z \le 6$?
- (c) Draw all possible non similar binary trees T with four external nodes.
- (d) Show that $a_n = n \cdot 2^n$ is a solution of the non-homogeneous linear recurrence relation $a_n = 2a_{n+1} + 2^n$.
- (e) What is the language generated by phase structure grammar 6?