Gif FYBSe CS (I) | Discrete Mathematics (36)
Q.P. Code: 781301

		$(2\frac{1}{2} \text{ Hours})$	[10tal Matks: 70]	
N.B.	(1) All	questions are compulsory.		
		ures to the right indicate marks.		
	(2)118	ares to the right findesse mane.		
jive ,		e vi	(15 M)	
l. Ans		ne following questions	(5 M)	
(a)	Choo	ose the best choice for the following questions:	` ,	
	(i)	If f_1 and f_2 are two functions from R to R such that	$\operatorname{it} I_1(x) - x$ and	
		$f_2(x) = x - x^2$, then $(f_1 + f_2)(x)$ is given by	0.3	
		(a) x (b) x^2 (c) - x (d) No	1 To	
	(ii)	Let {an} be a sequence that satisfies the recurrence relation		
		$n = 1, 2, 3, \ldots$, and suppose that $a_0 = 2$. What are a_1 and a_2		
		(a) 5 and 8 respectively (b) 8 and 5 respect	ively	
8		(c) 3 and 5 respectively (d) None of these		
	(iii)	A class contains 10 students with 6 men and 4 women. Nur	mber of ways to	
	3	elect a president, vice president, and treasurer is:		
		(a) 132 (b) 122 (c) 120	(d) 121	
	(iv) There are four bus lines between A and B, and three bus lines between			
		C. Number of ways that a man can travel by bus from A to C by way of B is		
		(**) ***	(d) 13	
	(\mathbf{v})	An undirected graph with no multiple edges or loops is cal		
		(a) tree (b) complex graph (c) simple graph ((d) pseudo graph.	
	Fill i	in the blanks for the following questions:	(5M)	
	(i)	A function f such that $f(x) = x$ for any x in the domain of	of f is said to be a	
	(*)	function.		
	(ii)	A relation R on a set A is called if whenever (a	$(a,b) \in R$ and	
		$(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.		
	(iii)	The Gödel number of a word $w = a_5 a_2 a_3 a_1 a_2$ is		
	(iv)	If a first task can be done in n ₁ ways and a second task	in n ₂ ways, and if	
		these tasks cannot be done at the same time then there are ways		
		to do either task.		
	(v)	Let G be a directed graph and v be a vertex of G. The	number of edges	
		ending at v is called		
		1		
(c)	Ans	wer the following questions:	(5M)	
	(i) =	Why is f, defined by $f(x) = 1/(1-x)$, not a function from R	to R?	
	(ii)	Find the Fibonacci numbers f ₂ and f ₃ .		

State the essential difference between permutations and combinations, with

examples.

- (iv) State Product rule in counting of objects.
- (v) What does it mean for a string to be derivable from a string ω by phase structure grammar G?

2. Answer any three of the following:

(15 M)

- (a) Let $S = \{-1, 0, 2, 4, 7\}$. Find f(S) if (i) f(x) = 1, (ii) f(x) = 2x + 1.
- (b) Define one-to-one function. Determine whether each of the following functions from {a, b, c, d} to itself is one-to-one.

i)
$$f(a) = b$$
, $f(b) = a$, $f(c) = c$, $f(d) = d$

ii)
$$f(a) = b$$
, $f(b) = b$, $f(c) = d$, $f(d) = c$

- (c) Let R be the relation on the set of real numbers such that aRb if and only if a b is an integer. Is R an equivalence relation? Justify your answer.
- (d) Define a poset. Is (S,R) a poset if S is the set of all people in the world and (a, b) ∈ R, where a and b are people, if
 - i) a is no shorter than b?
 - ii) a weighs more than b?
- (e) Solve the recurrence relation $a_n = 4a_{n-1} 4a_{n-2}$ for $n \ge 2$, $a_0 = 6$, $a_1 = 8$.
- (f) Describe Tower of Hanoi puzzle. Formulate a recurrence relation for it.

3. Answer any three of the following:

 $(15 \mathrm{M})$

- (a) How many ways in which 5 men and 5 women stand in a row so that no two men and no two women are adjacent to each other?
- (b) State and prove Pascal identity.
- (c) State Pigeonhole principle. A chess player has 77 days to prepare for a serious tournament. He decides to practice by playing at least one game per day and a total of 132 games. Show that there is a succession of days during which he must have played exactly 21 games.
- (d) How many integers between 1 and 600 (both inclusive) are not divisible by 3, 5 or 7?
- (e) Define a language L over an alphabet A. Let A= {a, b, c}. Find L* where language L= {a, b, c}}
- (f) Let $A = \{a, b\}$. Construct an automaton M which will accept precisely those words from A which ends in two b's.

4. Answer any three of the following:

(15 M)

(a) Consider the graph G in the following figure. Find: (i) all cycles which include vertex A, (ii) all cycles in G.

(b) Consider the graph G in the following figure (where the vertices are ordered alphabetically). (i) Find the adjacency structure of G. (ii) Find the order in which the vertices of G are processed using a Breadth-first search algorithm beginning at vertex A.

(c) Suppose a graph G contains two distinct paths from a vertex u to a vertex v. Show that G has a cycle.

(d) Draw the graph G corresponding to each adjacency matrix:

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 2 \\ 2 & 0 & 2 & 2 \end{bmatrix}$$

(e) Consider the binary tree T in the following figure.

- (i) Traverse T using the inorder algorithm.
- (ii) Traverse T using the postorder algorithm.

(f) Let T be the binary search tree in the following figure. Suppose nodes 22, 25, 75 are deleted one after the other from T. Find the final tree T.

Q.P. Code: 781301

5. Answer any three of the following:

(15 M)

- (a) Draw the Hasse diagram for divisibility on the set {1, 2, 4, 8, 16, 32, 64}.
- (b) How many solutions does the equation x+y+z=11 have, where x, y and z are nonnegative integers with $x \ge 3$, $y \ge 1$ and $z \ge 0$?
- (c) Find all solutions of the recurrence relation a_n = 2a_{n-1} + 3ⁿ.
 (d) What is the coefficient of x¹²y¹³ in the expansion (x+y)²⁵ using binomial theorem.
- Draw all possible non similar binary trees T with three nodes.