1 1					
H	6	15	KI	1	K
1 1	0	(7	IN	()	1

Seat No.____

Note: 1) All Question are Compulsory

- 2) All Questions Carry Equal Marks
- 3) Figures to the Right side Indicate Marks.

Q1.A) Attempt any 4 (each of 5 marks)

20M

1. If F I IR \rightarrow IR is defined by f(x) = 2x+3; then show that f is bijection & hence find f^1 .

2. Let $f(x) = x^2 + 1$ & $g(x) = \frac{1}{x-1}$ then find fog (x).

- 3. If the $f(x) = (2x-5)\frac{x-1}{2}$ and $g(x) = 5x^2 3$ find the composite function by fog (x) & Gof (x). verify whether (fog) (x) = (gof) (x)
- 4. Determine whether each of these function is a bijective from R to R

a) f(x) = 4-3x

b) $f(x) = x^5 + 1$

- c) f(x) = (x+1)/(x+2) d) f(x) = x
- 5. Verify whether the function $\delta: R \to R$ defined as f(x) = 4x-1 for all $X \in R$ is a) one-to-one b) onto
- 6. Determine whether each of these function form z to z is one to one

a) F(n) = n-1

b) $f(n) = n^2 + 1$

c) $f(n) = m^3$

d) f(n) = (n/z)

Q.2 Attempt any 4 (each of 5 marks)

20M

1. Let A= $\{0,1,2,3,4\}$ let R= $\{<1,2>,<1,3>,<1,4>,<2,3>,<3,3>,<4,2>\}$ & $\delta=\{<1,3>,<2,2>,<3,2>,<4,2>\}$ find.

i) Ro (Sos) ii) IS Ros = SoR?

- 2. If $A = \{1,2,3\} \& R = \{(1,1), (1,2), (2,1), (2,2), (2,3), (3,1), (3,3)\}$ find $M(R) \& [M(R)]^2$
- 3. If $A = \{1,2,3\}$ & $B = \{4,5,6\}$ and $R_1 = \{1,1\},(1,2),(2,2),(3,2),(3,3)\}$ & $R_2 = \{(4,4),(5,5),(6,6)\}$ find the matrix $m(R_1) \times m(R_2)$
- 4. Let $A = \{1,2,3\}$ & R be a Relation on A defined by $xRY \iff X \le Y$ find R and draw its diagraph.

5. The diagraph of relation R on set $A=\{a,b,c,d,e\}$ is as follows.

Find relation R & also obtain matrix of R.

- 6. Let $A = \{1,2,3,4,5,6\}$, Let $R = \{(a,b) | a=b \mod 2\}$ is an equiralence relation?
- Q-3. Attempt any 4 (each of 5 marks)

20M

- 1. Let $f: A \rightarrow B$ and A=B=R, $\delta(x) = X^4 + 1$ find f^1 .
- 2. Let $R = \{(1,1), (1,3), (2,2), (2,4), (3,3), (3,1), (4,4), (4,2)\}$ be the relation on $A = \{1,2,3,4,\}$ show that R is an equiralence relation on A. Also write down the equivalence classes with respect to relation R.
- 3. Let R be a relation on 2, defined by XRY is 5x+6y is divisible by 11 for $x,y,\in R$ show that R is an equivalence relation on Z.
- 4. Let $A = \{1,2,3,4\}$ and $R = \{<1,2>,<2,3>,<3,4>\}$ find R * transitive closure and draw its graph.
- 5. For set $A=\{1,2,3,4,5\}$ the Relation matrix is

Q-4. Attempt any 4 (each of 5 marks)

- 1. Let A={1,2,3,4,12} Let R be a partial order relation defined on A as a Rb if and only if a/b (a divides b) Draw the hasse diagram of partial order relation R.
- 2. Find first six terms of the sequence defined by the following recurrence relation $a_n = a_{n-1} + 3$ a_{n-2} with $a_0 = 1$ $a_1 = 2$
- 3. Consider recurrence relation $a_n=a_{n-1}+3$ a_{n-2} with $a_0=2y$, $a_{10}=12$ find 92
- 4. Find the adjancy matrix of following graph.

5. Draw the graph represented by adjancy matrix.

- 6. Define the following graph with example
 - i) connected graph

ii) Complete graph

****** BEST OF LUCK ********