Q.P. Code :05602

[Time: 2 $\frac{1}{2}$ Hours]

[Marks:75]

Please check whether you have got the right question paper.

- N.B:
- 1. All questions are compulsory.
- 2. Figures to the right indicate marks.
- Answer following questions.

15 05

- a) Choose the best choice for the following questions:
- Let f be a function that is continuous on [a,b] and differentiable on [a,b]. If $f''(x)=0 \forall x \in$
 - (a, b), then f is on [a, b].
 - p) increasing
 - q) decreasing
 - r) constant
 - s) None of these
- If a function f is concave down on (a, b), which of the following is true on (a, b).
 - p) f' > 0
 - q) f' < 0
 - r) f' = 0
 - s) None of these
 - iii) If f and g are integrable functions on [a,b] and $f(x) \ge g(x)$ for all $x \in [a,b]$, then p) $\int_a^b f(x) \ge \int_a^b g(x)$

p)
$$\int_a^b f(x) \ge \int_a^b g(x)$$

q)
$$\int_a^b f(x) \le \int_a^b g(x)$$

- r) Either (p) or (q)
- s) Neither (p) nor (q)
- iv) A rule that assigns a unique real number f(x, y, z) to each point (x, y, z) in some set D in the xyzsurface is called
 - p) a function of one variable
 - q) a function of two variables
 - r) a function of three variables
 - s) None of these.
 - v) which of the following is true about the function $f(x,y) = \frac{x^3y^2}{1-xy}$?
 - p) continuous everywhere
 - q) Continuous except where 1 xy = 0
 - r) Either (p) or (q)
 - s) Neither (p) nor (q)

(Turn Cver)

Q.P. Code:05602

Fill in the blanks for the following question:

- 05
- A function f has a relative minimum at x_0 if there is an open interval containing x_0 on which f(x) is $f(x_0)$ for every x in the interval.
- If f''(a) exists and f has an inflection point at x = a, then f''(a) is ii)
- If a function f is smooth on [a, b], then the length of the curve y = f(x) over [a, b] is iii)
- A solution of a differential equation $\frac{dy}{dx} y = e^{2x}$ is given by iv)
- If $f(x,y,z) = \sqrt{1-x^2-y^2-z^2}$, the value of $f(1,\frac{1}{2},\frac{-1}{2})$ is given by
- State true of false for the following questions:

- 05
- If a function f is continuous on [a, b], then f has an absolute maximum on [a, b].
- ii) Newtons Method is a process to find exact solutions to f(x) = 0.
- The equation $\left(\frac{dy}{dx}\right)^2 = \frac{dy}{dx} + 2y$ is an example of a second order differential equation. If g(x) is continuous at x_0 and h(y) is continuous at y_0 , then f(x,y) = g(x)h(y) is iii)
- iv) continuous at (x_0, y_0)
- A function f of two variables is said to have a relative minimum at a point (x_0, y_0) if there is a disk centered at (x_0, y_0) such that $f(x_0, y_0) \ge f(x, y)$ for all points (x, y) that lie inside the disk.
- Answer any THREE of the following questions:

15

- a) Find the intervals on which $f(x) = x^3$ is increasing and the intervals on which it is decreasing.
- b) Find the relative extrema of $f(x) = 3x^5 5x^3$.
- c) Locate the critical points of $f(x) = 4x^4 16x^2 + 17$.
- d) Find the absolute maximum and minimum values of $f(x) = 8x x^2$ in [0,6].
- e) A liquid form of antibiotic manufactured by a pharmaceutical firm is sold in bulk at a price of Rs 200 per unit. If the total production cost (in Rs) for x units is $C(x) = 500,000 + 80x + 0.003x^2$ and if the production capacity of the firm is at most 30,000 units in a specified time, how many units of antibiotic must be manufactured and sold in that time to maximize the profit?
- The equation $x^3 + x 1 = 0$ has one real solution. Approximate it by Newtons Method.
- Q.3 Answer any THREE of the following questions:

15

- a) Find the area under the curve $y = x^4$ over the interval [-1,1].
- b) Find the area of the region that is enclosed between the curves $y = x^2$ and y = x + 6.
- c) Find the approximate value of $\int_{1}^{2} \frac{1}{x^{2}} dx$ using Simpson's rule with n=10.
- d) Solve differential equation $\frac{dy}{dx} = -xy$
- e) Use Euler's Method with a step size of 0.2 to find approximate solution of the initial-value problem $\frac{dy}{dx} = y - x, y(x) = 2 \text{ over } 0 \le x \le 1.$
- f) Solve the differential equation $\frac{dy}{dx} + y = \frac{1}{1 + e^x}$ by the method of integrating factors.

(Turn Over)

Q.P. Code:05602

Q.4 Answer any THREE of the following questions:

15

- a) Let $f(x,y) = -\frac{xy}{x^2+y^2}$. Find limit of $f(x,y)as(x,y) \to (0,0)$ i) Along y-axis and ii) along the line $y = -\frac{xy}{x^2+y^2}$.
- b) Evaluate $\lim_{(x,y)\to(0,0)} y \cdot \log(x^2 + y^2)$, by converting to polar coordinates.
- c) Find $f_x(1,3)$ and $f_y(1,3)$ for the function $f(x,y) = 2x^3y^2 + 2y + 4x$.
- d) Find the directional derivative of $f(x, y, z) = x^2y yz^3 + z$ at the point (1, 2, 0) in the direction of the vector a = 2i + j 2k.
- e) Find an equation of the tangent plane to the surface $z = x^2y$ at the point (2, 1, 4). Also find the parametric equation of the line that is normal to the surface at the point (2, 1, 4).
- f) Find all relative extrema and saddle points of $f(x, y) = 4xy x^4 y^4$.
- Q.5 Answer any THREE of the following questions:

15

- a) Let $f(x) = ax^2 + bx + c$, where a > 0. Prove that $f(x) \ge 0$ for all x if and only if $b^2 4ac \le 0$.
- b) Show that $y = xe^{-x}$ satisfies the equation xy' = (1-x)y.
- c) Find the area of the region under the curve $y = x x^2 + 1$ and above the x-axis.
- d) Solve differential equation $x \frac{dy}{dx} y = x$.
- e) Determine whether the following limit exists. If so, find its value. $\lim_{(x,y)\to(0.0)} \frac{x^4-y^4}{x^2+y^2}$