gyes (11)/

Paper / Subject Code: 77305 / Calculus. /35

Q.P. Code: 31173

(2 1/2 Hours)

[Total Marks: 75]

- N.B. 1) All questions are compulsory.
 - 2) Figures to the right indicate marks.
 - 3) Illustrations, in-depth answers and diagrams will be appreciated.
 - 4) Mixing of sub-questions is not allowed.

Q. 1 Attempt All (Each of 5Marks)

(15M)

- (a) Select correct answer from the following:
 - 1) In which of the following method, we approximate the curve of solution by the tangent in each interval.
 - a) Simpson's Method
 - b) Euler's method
 - c) Newton's method
 - d) None of the above
 - 2) $\int 1/(9x^2 + 25) dx =$
 - a) $(3/5) \tan^{-1}(3x/5) + c$
 - b) $(1/9) \tan^{-1}(3x/5) + c$
 - c) $(3/5) \tan^{-1}(5x/3) + c$
 - d) $(1/15) \tan^{-1}(3x/5) + c$
 - 3) A function is said to be invertible if and only if it is_____
 - a)Bijective
- b) injective
- c) Inflexion d) Surjective

4)
$$\lim_{x\to\infty} 7/2x =$$

- a)1
- b)infinite
- c) zero
- d) None

5) If
$$f(x, y) = x^3y^3 + y^3 + 1$$
 then $f_x(x, y)$ is

- $a)3x^2$
- b) 3xy
- c) y^3x
- d) None

(b) Fill in the blanks:

 $(continuous, \infty, (4i+5j)/41, (4i+5j)/31, -\infty, e^x, derivative, x-3 log | x+3 | + c)$

- 1. $\lim_{x \to \infty} (5 2x) = \underline{\hspace{1cm}}$
- 2. The derivative of ex is ______
- 3. Unit vector of 4i+5j is_____
- 4. $\int x/(x+3) dx =$ _____
- 5. The rate of change of one variable with respect to another is called

Paper / Subject Code: 77305 / Calculus.

Q.P. Code: 31173

(c) Answer the following in one line

- 1. Define Tangent Plane
- 2. Define Critical Point
- 3. Define the term Definite Integral

2

- 4. Evaluate ∫sin x dx
- 5. Linearization of a function

Q. 2 Attempt the following (Any THREE)

(15M)

- (a) Show that $\lim_{x \to 0} 2x^2 + 3x 4 = 1$
- (b) Discuss the continuity of the function $f(x) = \sqrt{4 x^2}$
- (c) Show that the function $f(x) = x^3 9x^2 + 30x + 7$ is always increasing.
- (d) Find the relative extrema of $f(x) = 4xy-x^4-y^4$ using both first and second derivative test.
- (e) Using Newton's method find the approximate root for the equation $f(x)=x-\cos x$
- (f) Divide 100 into two parts such that sum of their square is minimum.

Q. 3 Attempt the following (Any THREE)

(15M)

- (a) Evaluate $\int \sin^{-1} \sqrt{x} \ dx$
- (b) Evaluate $\int_{\frac{\pi}{6}}^{\frac{n}{3}} \frac{1}{(1+cotx)} dx$
- (c) Estimate $\int_0^4 x^2 dx$ using simpson's rule and n = 4.
- (d) Solve the differential equation $Sec^2x tan y dx + sec^2y tan x dy = 0$
- (e) Solve dy/dx = 1 y; y(0) = 0, find y(0.1) and y(0.3) using Euler's method. Taking h = 0.1.
- (f) Solve the differential equation $(x+1)\frac{dy}{dx} y = e^x (x+1)^2$

Q. 4 Attempt the following (Any THREE)

(15)

- (a) Show that $f(x, y) = 2x^2 + 3xy$ is continuous at (2, 3)
- (b) Find the second order derivatives of $f(x,y)=x^2y^3 + x^4y$
- (c) If $z=x^2y$, $x=t^2$ and $y=t^3$ Use chain rule to find $\frac{dz}{dt}$.
- (d) Find the directional derivative of $f(x, y)=x^3+2xy^2$ at the point (-2, -3) in the direction of the vector $\mathbf{a} = \mathbf{i} + \mathbf{j}$
- (e) Find the gradient vector of f(x, y) if $f(x, y) = 10 8x^2 2y^2$. Evaluate it at (2, 3)
- (f) Find the equation for the tangent plane and parametric equations for normal line to the surface $z=x^2y$ at the point (2, 1, 4)

Paper / Subject Code: 77305 / Calculus.

Q.P. Code: 31173

Q. 5 Attempt the following (Any THREE)

(15)

- (a) Locate all relative extrema and saddle points of $f(x, y) = 3x^2 2xy + y^2 8y$
- (b) Solve the differential equation $\frac{dy}{dx} = (4x + y + 1)^2$
- (c) Draw the graph of $y = 4 3x^2 + x^3$ and find the intervals on which the function y is increasing and decreasing(draw the graph on the answer sheet itself)
- (d) Find the asymptotes of the function $y = \frac{x}{(x+1)(x+2)^2}$
- (e) Solve the differential equation $dy/dx = (4x + y + 1)^2$

Page 3 of 3