Duration: 21/2 Hrs

Marks: - 75

Note: - 1) All questions are Compulsory.

2) Figures to the right indicate maximum marks.

Q.1. Attempt any four from the following: 1) The function f: $R \to R$, check the differentiability for the function at the given points. $f(x) = 3x^2 - 10, \qquad x < 5$ $= 4x^2 + 3, \qquad x \ge 5, \text{ at } x = 5.$	(20N COI(U)	A)
 2) Find the intervals on which the function f is increasing or decreasing. f(x) = x³ + 9x² + 30x + 7. 3) Define composite function. Explain classification of functions. 4) Determine absolute extrema for the function, f(x) = x - x³ on [0, 1]. 5) Find, at what value of x, the curve y = 3x² - 2x³ is concave downward and when it is concave 	CO1(A) CO1(R) CO1(A)	
upwards. 6) Using Newton's method find the approximate root for the following equation, $f(x) = x^4 - x - 10$ lies in [1, 2].	CO1(A)	
Q.2. Attempt any five from the following: 1) Define the properties of the definite integrals.	(20N CO2(R)	A)
2) Solve $\frac{dy}{dx} = e^{x+y} + e^y x^3$. 3) Evaluate $\int_{-2}^4 \left[\frac{4}{(1+2x)^3} - \frac{5}{1+2x} \right] dx$.	CO2(U)	
4) Evaluate $\int_0^3 \frac{1}{1+x^5} dx$ for $n = 6$ by Simpson's rule.	CO2(U)	
5) Write down the algebraic rules of limits of real valued functions. 6) If $f(x) = x^2$ find the area on the interval [1, 5].	CO2(R) CO2(A)	
().3. Attempt any four from the following: $x^2-2xy-3y^2$	(20N	A)
1) Evaluate $\frac{x^2 - 2xy - 3y^2}{x - 3y}$. 2) Check, $f(x, y) = \frac{4x^2 - 9y^2}{2x - 3y}$ for $2x \neq 3y$	CO3(U)	
= 5 if $2x = 3y$ is f continuous at $(3, 2)$ 3) Find the equation of tangent and normal for $x^3 + x^2y - 2xy^2 + 25 = 0$ at $(-2, 3)$. 4) $f(x, y) = x^2 - y^2 + 2x + 8y - 70$. Find all local maximum and local minimum.	CO3(U) CO3(A) CO3(A)	
5) Show that $f_{xy} = f_{yx}$ for $(x, y) \neq (0, 0)$ f $(x, y) = \frac{xy + y^2}{x^2}$ for $x \neq 0$, f $(x, y) = 0$, if $x = 0$. 6) Find f $(x, y) = x^3 + y^3$, $x = t^2 - 1$, $y = 4t + 1$.	CO3(U)	
Q.4. Attempt any five from the following: 1) Find $f(x, y) = x^2y^3 - x^3y^2$ at $(2, 3)$	(15M CO3(U)	D
2) Solve $\frac{dy}{dx} - \frac{3y}{x} = x$. 3) What is Newton's law of cooling? Express the derivations.	CO3(U) CO2(R)	
4) Evaluate $\int (\sqrt{\tan x} + \sqrt{\cot x}) dx$. 5) Evaluate using integration by parts method.	CO2(U) CO2(U)	
$\int x . \sqrt{x + 1} dx$ (i) Show that, the functions $f(x) = 10 + 12x + 6x^2 + x^3$ is always decreasing.		