21/3/24 ATUT 2405. Lineau Algebra (03) 832081123 MAR

Note: - (1) All questions are compulsory.

MARKS:- 75

		(2) All questions carry equal marks. (3) Figures to the right indicates full marks.		
Q.1		Attempt any 'Four' of the following:		(20)
	100	Express the following in the standard form of complex number $(x + iy)$	CO1-(U)	(/
		a) $\frac{2-\sqrt{3}i}{1+i}$ b) $\frac{3+2i}{2-3i}$		
	2.	1+i 2-3i	COL (II)	
	۷.	Express the following in polar form and find their arguments. 1 $\sqrt{3}$	CO1-(U)	
		a) $\sqrt{3} + i$ b) $\frac{1}{2} + i \frac{\sqrt{3}}{2}$		
	3.	For $u = [0,4]$ and $v = [-1,3]$, Find vector $v - u, u + v, u - v, 3v - 2u$	CO1-(A)	
	4.	For each of the following pair of vectors over R, evaluate the expression u.v.	CO1-(A)	
		a) $u = [1,2,3]$, $v = [3,2,1]$ b) $u [6,2,-1]$, $v = [5,-8,2]$		
	5.	Find the cross product of the given two vector	CO1-(U)	
		$\vec{a} = 5\hat{\imath} + 6\hat{\jmath} + 2\hat{k}$ and $\vec{b} = \hat{\imath} + \hat{\jmath} + \hat{k}$	(-/	
	6.	Solve a triangular system of linear equation where,	CO1-(U)	
0.1		x + y + z = 9; $2x - y + z = 5$ and $4x + y - z = 7$		
Q.2	1.	Attempt any 'Four' of the following Compute the following matrix-vector products	CO2-(U)	(20)
	1	a) $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \times [0.5, 0.5]$ b) $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 4 \end{bmatrix} \times [7, 0, 1]$	CO2-(U)	
	2.	Compute the following $\begin{bmatrix} 1 & -1 \end{bmatrix} \wedge \begin{bmatrix} 0.5,0.5 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \end{bmatrix} \wedge \begin{bmatrix} 7.0,1 \end{bmatrix}$	con an	
	4.0	compute the following	CO2-(U)	
		a) $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 3 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ b) $[241] \times \begin{bmatrix} 1 & 2 & 0 \\ 5 & 1 & 1 \\ 2 & 3 & 0 \end{bmatrix}$		
	3.	Find a basis for the subspace spanned by 5 vectors.	coa an	
	٥.	$V_1(1,2,2,-1), V_2(1,3,1,1), V_3(1,5,-1,5), V_4(1,1,4,-1)$ and $V_5(2,7,0,2)$	CO2-(U)	
	4.	Check whether given vector are linearly dependent or not	CO2-(U)	
	_	$\{(1,2,0),(2,4,1),(0,0,-1)\}$		
	5.	Show that the following set of vector over R are linearly dependent. (2,2,1), (-4,6,5), (1,0,0)	CO2-(A)	
	6.	Write a Python Program to enter a matrix and check if it is invertible. If invertible	CO2(A)	
		exists, then find inverse.	00=()	
Q.3		Attempt any 'Four' from the following		(20)
	1.	[4 6 6]	CO3 (U)	
		Find the eign values of $A = \begin{bmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{bmatrix}$		
	2.	Calculate the eign vectors for the A.	CO3 (U)	
	3.	Check whether the matrix A is diagonalizable then find the transforming matrix P	CO3 (U)	
	4.	Solve the following system by Gaussion elimination method	CO3 (A)	
		x + y + z = 9; $2x + 5y + 7z = 52$; $2x + y - z = 0$. ,	

	5.	Write a python program to convert a 2*2 matrix to row echelon form.	CO3 (A)	
	6.	For the following matrix- vector equations check whether the solution exist or not? If exists then [1 3 -2 1 0]	CO3 (A)	
		Solve $\begin{bmatrix} 1 & 3 & -2 & 1 & 0 \\ 0 & 0 & 2 & -3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} * [x_1, x_2, x_3, x_4, x_5] = [5, 3, 2, 1]$		
Q.4		Attempt any 'Five' of the following:		(15)
	1.	Find the minimal polynomial of $A = \begin{bmatrix} 3 & -1 & 0 \\ 0 & -2 & 0 \\ 1 & -1 & 2 \end{bmatrix}$	CO3 (A)	(10)
	2.	Write a short note on Internet worm	CO3 (R)	
	3.	Calculate the absolute value of $3 + 4i$	CO3 (U)	
	4.	Define the term inner product space	CO3 (R)	
	5.	Express $\frac{3+2i}{1-2i}$ in terms of $x + iy$	CO3 (U)	
	6.	[2] 2] [5] 41	CO3 (A)	
