S.Y. as Sem-III Linear Algebra. | | DURATION: - 2½ hrs 832081123 MARKS | :- 75 | | |--------|---|----------|-------| | | No. (1) All and the constitution of consti | 100 | | | | Note: - (1) All questions are compulsory. (2) All questions carry equal marks. | - 137 | | | | (3) Figures to the right indicates full marks. | 95 | | | | control section and a section of the | SPIP I | (20) | | Q.1 | Attempt any 'Four' of the following: | 2 | (20) | | | Write a python program to rotate a complex number by 90°, 180° and 270° | CO1 (A) | | | | Express the following in the standard form of complex number | CO1 (U) | | | | $2-\sqrt{3}i$ 1+i sideoleanistic road il 3 iii - 4 arti 2 | 107 | | | | a) $\frac{2-\sqrt{3}i}{1+i}$ b) $\frac{1+i}{1-i}$
3. Express the following in polar form and find their arguments | COL (II) | | | 30 | 3. Express the following in polar form and find their arguments | COI (U) | 210.9 | | | a) $\frac{1+2i}{1-3i}$ b) $\frac{-1}{2}+i\frac{\sqrt{3}}{2}$ | Girls . | | | | | CO1 (A) | | | E | 4. For $u = [0,1,1]$ and $v = [1,1,1]$ over $GF(2)$,
Find $v + u$ and $v + 2u$ and $2v - 3u$ | | | | 31,95% | 5. Two vectors are given as $\vec{r} = 2\hat{\imath} + 3\hat{\jmath} + 5\hat{k}$, $\vec{f} = 3\hat{\imath} - 2\hat{\jmath} + 4\hat{k}$, find the resultant | CO1 (A) | | | | vector $\vec{r} = \vec{r} \times \vec{F}$ and its magnitude. | | | | | 6. Check whether the given system of linear equation is consistent or not. | CO1 (U) | | | | 2x + y + z = 5; x + y + z = 4; x - y + 2z = 1 | 011 | | | Q.2 | Attempt any 'Four' of the following | ling. | (20) | | 19.00 | Compute the following vector – matrix product | CO2 (U) | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 74.80 V | .00 | | | a) $\begin{vmatrix} 4 \\ 6 \end{vmatrix} = \begin{vmatrix} 4 \\ -1 \end{vmatrix} = \begin{vmatrix} 6 \begin{vmatrix}$ | 14 02V | | | | 2. Check whether given vectors are linearly dependent or not | CO2 (A) | | | | (2,2,1), (-4,6,5), (1,0,0) | | | | | Using the normal form of Row transformation find the rank of the matrix, | CO2 (A) | | | | $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{bmatrix}$ | | | | | $A = \begin{bmatrix} 2 & 3 & 4 \\ 2 & 5 & 7 \end{bmatrix}$ | | | | | | CO2 (A) | | | | Find rank of matrix using Echelon form, $A = \begin{bmatrix} 1 & 1 & 1 & -2 \\ 2 & 3 & 1 & 2 \\ 2 & 6 & 2 & -2 \end{bmatrix}$ | | | | | Find tank of matrix using Echeloft form, A = 2 6 2 -2 | | | | - | 5. Write a python program to convert a 2X2 matrix to row echelon form. | CO2 (A) | | | | 6. If $V_1 = [1,2,2,-1]$, $V_2 = [1,3,1,1]$, $V_3 = [1,5,-1,5]$, $V_4 = [1,1,4,-1]$ and | CO2 (A) | | | | $V_5 = [2,7,0,2]$ Find the basis for the subspace spanned by these vectors. | | | | Q.3 | Attempt any 'Four' from the following | | (20) | | | 1. Write a python program to enter a matrix and check if it is invertible. If invertible | CO3 (A) | | | | exists, then find uiverse | | | | | 2. [1 -1 2] | CO3 (U) | | | | 2. If $A = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 0 \\ 4 & 1 & -2 \end{bmatrix}$ find A^{-1} using adjoint method. | | | | | l4 1 -2J | | | | | | | | | | 3. For each of the matrix-vector equations check whether the solution exist or not? | CO3 (U) | |------------------|--|--| | | If it exists then solve | NH . | | | $\begin{bmatrix} 1 & 2 & -8 & -4 & 0 \\ 0 & 0 & 2 & 12 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} * [x_1, x_2, x_3, x_4, x_5] = [5,4,0,0]$ | ### 11 A 11 | | 100 | 0 0 2 12 0 - [21, 22, 23, 24, 25] | | | | 4. Solve the following system by Gaussion elimination method | CO3 (U) | | | 2x - y + 3z = 9; $x + y + z = 6$; $x - y + z = 2$ | 1121121 | | | 5. Find eigen values and eigen vectors for $\begin{bmatrix} 3 & 17 \\ 0 & 24 \end{bmatrix}$ | CO3 (A) | | | 3.600,000 000,000000 | CO3 (A) | | | Show that $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ is not diagonalizable. | The state of s | | | Show that $A = \begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$ is not diagonalization. | | | Q.4 | Attempt any 'Five' of the following: | (15) | | Q.T | | CO3 (U) | | | Calculate the absolute value of 2 - 5i | 38 | | | 2. Find the standard form of a complex number if $\frac{2-3i}{3-2i}$ we have. | CO3 (U) | | | | CO3 (A) | | | Find the A^{-1} if existst, $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ | | | | 7 8 9 | 500 (1) | | 8 8 8 | 4. Write a short noe on internet worm. | CO3 (A) | | | 5 [3 -1 0] | CO3 (U) | | | 5. Find the minimal polynomial of $A = \begin{bmatrix} 3 & -1 & 0 \\ 0 & 2 & 0 \\ 1 & -1 & 2 \end{bmatrix}$ | | | زواد انجه ی ۱۹۵۰ | 11 (-1:2) | CO3 (R) | | | 6. Define the term inner product space | CO3 (K) | | | | The state of s | (*) The state of s