5505 TH

S0133 / S2002 THEORY OF COMPUTATION.

Q.P. Code: 22218

(2 1/2 Hours)

[Total Marks: 75

3)		e Questions rect alternative aph is a finite directed labelled graph in which each te and indicate the transition of a state and the edges are put/output. ed edge, vertex	
Q. 1	Attempt All the Questions		
Α.	Choose the correct alternative		(5M)
i.		transition of a state and the edges are	
	c) directed edge, vertex	N 25 W N N E O O O O O N N N N O O O	
ii.	The set $\{\Lambda, 0, 00, 000,\}$ can also be real 0^*	presented by	
iii,	A derivation tree is also called a) null tree	67 A C 97 A C	
iv.	20 C P	ack called pushdown store. b) pushdown automata	
V.		y the reachability from the state b) current, final	
В.	Fill in the blanks (Choose correct one one, zero, Turing machine, Ardonondeterministic, derivation, determini	from the pool) en's theorem, Pumping Lemma,	(5M)
i. ii. iii. iv. v.		ts are not regular. etions. be determined uniquely by the input	

Q.P. Code: 22218

Explain the following terms in one or two lines C.

(5M)

- i. Define language.
- What is the regular expression corresponding to the set of all the strings over $\{a, b\}$ containing exactly 2a's.
- iii. Compare between Moore and Mealy Machines.
- iv. What is a sentence?
- v. When do we say two regular expressions are equivalent?

Q.2Attempt the following: (Any THREE)

(15M)

A. Define an automaton. Explain its various components.

B. Construct a Mealy Machine which is equivalent to the Moore machine given by the following table.

Present	Next State 8		888888
state	a=0	a=1	Output
→q ₀	q3	Son Pos	0 1 3 0 6 3
97500	$^{\circ}$ ϕ \mathbf{q}_{1} \sim $<$	q ₂	0.881
$q_2 \wedge \circ$	q_2	1 q ₃	0000
q 3	`	_ q ₀	0000000

- C. Construct a DFA accepting all the string w over $\{0, 1\}$ such that the number of 1's in w is 3 mod 4.
- D. Construct a grammar G accepting the set L of all strings over {a, b} having more a's than b's.
- E. Construct a finite automaton equivalent to (0+1)*(00+11)(0+1)*
- F. State and prove Pumping Lemma for regular sets.

Q.3 Attempt the following: (Any THREE)

(15M)

- A. Define pushdown automata. Explain its design.
- B. What is context free grammar? Construct a context free grammar G generating all integers.
- C. Define ambiguous grammar. Find if the following set of production of a grammar make it ambiguous?

P:
$$S \rightarrow if b$$
 then U

$$S \rightarrow if b$$
 then U else S

$$S \rightarrow a$$

$$U \rightarrow for \ c \ do \ S$$

$$U \rightarrow a$$

- D. Show that $L = \{ a_p \mid p \text{ is a prime} \}$ is not regular.
- Define Regular grammar. Also Generate the transition diagram for the following regular expressions.

a.
$$a*b(a+b)*$$

b.
$$a*+b$$

Q.P. Code: 22218

F. What is derivation tree? Give example to explain the concept.

Q.4 Attempt the following: (Any THREE)

(15M)

- A. What is Turing machine? Explain its composition and its operation.
- B. Describe the characteristics of a linear bound automata model.
- C. What are the ways in which we can represent Turing machines? Explain.
- D. Consider the Turing machine with five states with initial state q_I and final state q_5 and the transition table given below.

Present	Tape symbol			
state	b		1	
$\rightarrow q_1$	1Lq ₂	0Rq1		
q 2	bRq3	$0Lq_2$	1Lq2	
q 3	10.00	bRq4	bRq5	
<i>q</i> ₄	ORq5	0Rg4	1Lq4	
q5	0Lq2			

Write the computation sequence of the input string 00.

- E. Write a note on unsolvable problems.
- F. Design a Turing machine that accepts $\{0^n1^n \mid n \ge 1\}$

Q.5 Attempt the following: (Any THREE)

(15M)

A. Construct a deterministic automaton equivalent to $M=(\{q_0, q_1\}, \{0,1\}, \delta, q_0, \{q_0\})$ where δ is defined by its state table give below.

states/Σ	0
°Z°⇒q₀°	$q_0 > q_1$
q_I	q_1 q_0,q_1

- B. Find if the set $L = \{ww \mid w \in \{a,b\}^* \text{ is not regular.} \}$
- C. Write a note on multitape Turing machines.
- D. Briefly describe Halting problem.
- E. Describe the sets represented by the following regular expressions.
 - a. (a+b)*(aa+bb+ab+ba)*
 - b. (aa)*+(aaa)*
 - c. (1+01+001)*(\(\Lambda\)+0+00)
 - d. a+b(a+b)*
 - e. ab*a
