sold suce (m) / There of computation (22)

N.B. 1) All questions are compulsory.

2) Figures to the right indicate marks.

Q.P. Code: 22217

(2 1/2 Hours)

[Total Marks: 75

	Draw suitable diagrams and illustrated Mixing of sub-questions is not allo		rever necessary.	
Q. 1 A. i.	Attempt All the Questions Choose the correct alternative The next state of an automaton at present and the present	any instar	nt of time is determined by the	(5M)
800	a) state, output		input, output	
	c) state, input	d)	output, start state	
ii.	A type 1 grammar is also called			
	a) context dependent		natural grammar	
	c) context free	d)	regular grammar	
iii.	Turing machines can accept	languages	i.	
	a) type-0	b)	type-1	77
	c) type-2		type-3	
iv.	If L is context-sensitive language, t	hen L is _	by linear bound automata.	
	The converse is			
	a) rejected, true	b)	accepted, true	
	c) rejected, false		accepted, false	
v.	The set of all strings of 0's and 1's expression	ending in 0	0 can be described by the regular	
3	a) (01)*00	b)	01*00	
	c) (0+1)*00	d)	(Q+1)*(00)*	
В.	Fill in the blanks (Choose correct moore, tree, terminal, accepting lemma)	t one from g, non-reg	the pool) ular, regular, mealy, pumping	(5M)
í.	Final state is also calleds	state.	ST6	
ii.	The set L= $\{0^i I^i \mid i \ge 1\}$ is			
		machine.		
iv.	Context free grammar can be repre	esented usi	ng	
v.	A gives a necessary cond	ition that c	can be used to snow that certain	

Q.P. Code: 22217

Explain the following terms in one or two lines C.

(5M)

- What does the language L represented by (11)*describe?
- What are equivalent states?
- iii. Find if the following statement is true or false. "The language L = $\{a^nb^n \mid \underline{n} \ge 1\}$ is context free language but not regular"
- iv. If G is $S \rightarrow aS \mid a$, then what is L(G)?
- Prove that $A + (AB^*)B = AB^*$.

Attempt the following: (Any THREE) Q.2

(15M)

- A. Define Grammar. Obtain the grammar generating $\{a^ib^nc^n \mid n \ge 1, j \ge 0\}$?
- B. Find the deterministic acceptor equivalent to $M=(\{q_0, q_1, q_2\}, \{a,b\}, \delta, q_0, \{q_2\})$ where δ is given in the table below.

states/Σ	а	b
$\rightarrow q_0$	q_0, q_1	q_{2}
q ₁	q_0	q_1
q_2		q_0, q_1

- C. Briefly explain the steps of construction of minimum automaton.
- D. If $G = (\{S\}, \{0,1\}, \{S \rightarrow 0S1, S \rightarrow \lambda\}, S)$, find L(G).
- E. Write a note on Chomsky Classification of Grammar.
- F. Write a note on operations on languages.

Attempt the following: (Any THREE)

(15M)

0.3

- A. What is derivation tree? Give example.
- B. Prove $(a+b)^*=a^*(ba)^*$. Also draw the transition system for $a^*(ba^*)^*$.
- C. Write a note on Normal forms for context free grammar.
- D. Define Regular Expression. Also prove that (1+00*1)+(1+00*1)(0+10*1)*(0+10*1)=0*1(0+10*1)*
- E. State and prove Arden's theorem.
- F. Explain the pumping lemma for CFG.

Q.4 Attempt the following: (Any THREE)

(15M)

- A.—Write a note on the model of a linear bound automata.
- B.— What is the halting problem of a Turing machine? Explain.
- C. Write a note on unsolvable problems.
- D- Write a note on Variants of Turing Machine.
- E. Design a Turing machine that accepts $\{0^n I^n \mid n \ge 1\}$
- F. Write a note on halting problem of Turing Machines.

Q.P. Code: 22217

Q.5 Attempt the following: (Any THREE)

(15M)

- A. Construct a DFA with reduced states equivalent to the regular expression: 10+(0+11)0*1
- B. a. Null productions: Production of the form $A \rightarrow \lambda$
 - b. Unit productions: Production of the form $A \rightarrow B$
 - c. Empty string: String of length zero
 - d. Terminal symbols: cannot appear on left side of production, cannot be further derived....
 - e. Natural language: language generated by type 0 grammar.
- C. What are ambiguous grammar? Give example.
- D. Construct a PDA A accepting $L = \{wcw^T \mid w \in \{a,b\}^*\}$ by final state.

E. Define NFA. Give an example.
