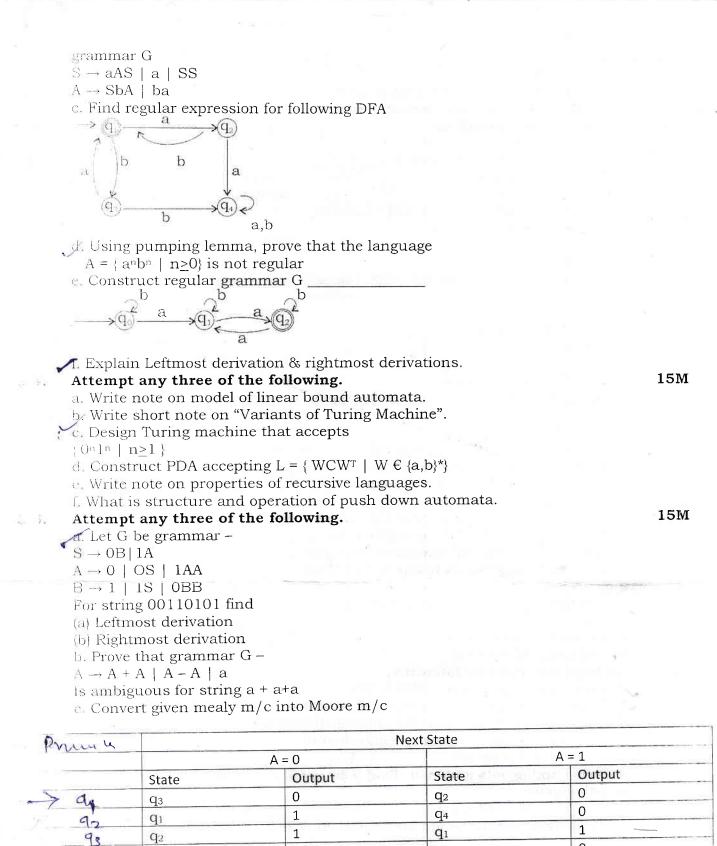
- 1 E

F7230T019

Maximum Marks : 15

0.1.4	Note : 1) All Questions are compute 2) Figures to right indicate	marks	
Q.1 A)	Attempt all the questions.		5 W
A.	Choose the correct alternatives.		0 11
	i) Type 1 grammar is also called		
	(a) Context dependent	(b) natural grammar.	
	(c) context free	(d) regular grammar	
		's ending in 00 can be described by the	
	regular expression -	s chung in oo can be described by the	
	(a) $(01)^* 00$	(h) 01*00	
	(a) $(01) 00$ (c) $(0 + 1) * 00$	(b) $01*00$	
		(d) $(0 + 1)^*(00)^*$	
	iii) An automaton in which the outpu		
	machine is called a	 E207 	
	(a) Mealy	(b) Moore	
	(c) Turing Machine	(d) All of the these	
	iv) PDA stands for		
	(a) Pull down automata	(b) Push direct automata	7
	(c) Push down automata	(d) Pull direct automata	
	v) The set { 1, 11, 111,} car	n also be represented by	
	(a) 1*	(b) 1+	
8	(c) (11)*	(d) (11) ⁺	
В.	Fill in the blanks. (Choose correct	one from the Pool).	5) I
	{ accepting, PDA, Turing machine,	tree, regular, non-regular, initial, final)	
	i) Context free grommer can be rende	cree, regular, non-regular, micial, mai	
	i) Context free grammar can be repre	sented using	
	ii) Final state is also called	state.	
	iii) Context free languages (Type – 2)	can be accepted by	
	iv) The language $L = \{a^p \mid P \text{ is a prim} \}$	e } is	
-	v) Finite automation can have more t	chan one state.	
с.	Explain following terms is one or t		511
	i) If G is S \rightarrow aS a, then what is L	(G)?	
	jii) Non-deterministic finite state mac	hine	
	iii) Moore machine		
	iv) Chomsky Normal form		
	v) Pushdown Automaton		
Q.2.	Attempt any three of following.		
			1
	A Write difference between DFA & NI		1 - P
	a. Write difference between DFA & N	DFA. f all strings over $(0, 1)$ of length 0	1:N
	b. Construct DFA that accepts sets o	f all strings over {0, 1} of length 2.	$1 \rightarrow \mathbb{N}$
	 ✤. Construct DFA that accepts sets o ✔. Write short note on Chomsky class 	of all strings over {0, 1} of length 2. ssification of grammar.	1 - N
	 Construct DFA that accepts sets o Write short note on Chomsky class Construct a finite automaton equiv 	of all strings over {0, 1} of length 2. ssification of grammar.	1 - N
	 Construct DFA that accepts sets o Write short note on Chomsky class d. Construct a finite automaton equiv (0 + 1)* (00+11) (0+1)* 	of all strings over {0, 1} of length 2. ssification of grammar. valent to	1 - N
	 Construct DFA that accepts sets o Write short note on Chomsky class d. Construct a finite automaton equiv (0 + 1)* (00+11) (0+1)* e. Define Ambiguous grammar. Find 	of all strings over {0, 1} of length 2. ssification of grammar.	1 - N
	 b. Construct DFA that accepts sets o c. Write short note on Chomsky class d. Construct a finite automaton equiv (0 + 1)* (00+11) (0+1)* e. Define Ambiguous grammar. Find is ambiguous? 	of all strings over {0, 1} of length 2. ssification of grammar. valent to	1 - N
	 ★b. Construct DFA that accepts sets o ★c. Write short note on Chomsky class d. Construct a finite automaton equiv (0 + 1)* (00+11) (0+1)* e. Define Ambiguous grammar. Find is ambiguous? S → SbS a 	of all strings over {0, 1} of length 2. ssification of grammar. valent to if grammar G with following productions	1:-N
	 b. Construct DFA that accepts sets o c. Write short note on Chomsky class d. Construct a finite automaton equiv (0 + 1)* (00+11) (0+1)* e. Define Ambiguous grammar. Find is ambiguous? 	of all strings over {0, 1} of length 2. ssification of grammar. valent to if grammar G with following productions	1:-N
	 ★b. Construct DFA that accepts sets o ★c. Write short note on Chomsky class d. Construct a finite automaton equiv (0 + 1)* (00+11) (0+1)* e. Define Ambiguous grammar. Find is ambiguous? S → SbS a 	of all strings over {0, 1} of length 2. ssification of grammar. valent to if grammar G with following productions	1 - N 1
	 ★b. Construct DFA that accepts sets o ★c. Write short note on Chomsky class d. Construct a finite automaton equiv (0 + 1)* (00+11) (0+1)* e. Define Ambiguous grammar. Find is ambiguous? S → SbS a 	of all strings over {0, 1} of length 2. ssification of grammar. valent to if grammar G with following productions	
	 ★b. Construct DFA that accepts sets o ★c. Write short note on Chomsky class d. Construct a finite automaton equiv (0 + 1)* (00+11) (0+1)* e. Define Ambiguous grammar. Find is ambiguous? S → SbS a 	of all strings over {0, 1} of length 2. ssification of grammar. valent to if grammar G with following productions	
	 ★b. Construct DFA that accepts sets o ★c. Write short note on Chomsky class d. Construct a finite automaton equiv (0 + 1)* (00+11) (0+1)* e. Define Ambiguous grammar. Find is ambiguous? S → SbS a 	of all strings over {0, 1} of length 2. ssification of grammar. valent to if grammar G with following productions	
	 ★b. Construct DFA that accepts sets o ★c. Write short note on Chomsky class d. Construct a finite automaton equiv (0 + 1)* (00+11) (0+1)* e. Define Ambiguous grammar. Find is ambiguous? S → SbS a 	of all strings over {0, 1} of length 2. ssification of grammar. valent to if grammar G with following productions	
	 ★b. Construct DFA that accepts sets o ★c. Write short note on Chomsky class d. Construct a finite automaton equiv (0 + 1)* (00+11) (0+1)* e. Define Ambiguous grammar. Find is ambiguous? S → SbS a 	of all strings over {0, 1} of length 2. ssification of grammar. valent to if grammar G with following productions	1 - N
	 b. Construct DFA that accepts sets o c. Write short note on Chomsky class d. Construct a finite automaton equive (0 + 1)* (00+11) (0+1)* e. Define Ambiguous grammar. Find is ambiguous? S → SbS a f. Check these two automata are equive 	of all strings over {0, 1} of length 2. ssification of grammar. valent to if grammar G with following productions	1 - N
	 b. Construct DFA that accepts sets o c. Write short note on Chomsky class d. Construct a finite automaton equive (0 + 1)* (00+11) (0+1)* e. Define Ambiguous grammar. Find is ambiguous? S → SbS a f. Check these two automata are equive 	of all strings over {0, 1} of length 2. ssification of grammar. valent to if grammar G with following productions	
	b. Construct DFA that accepts sets o c. Write short note on Chomsky class d. Construct a finite automaton equiv $(0 + 1)^* (00+11) (0+1)^*$ e. Define Ambiguous grammar. Find is ambiguous? S \rightarrow SbS a f. Check these two automata are equiv d d d d g c g d	of all strings over {0, 1} of length 2. ssification of grammar. valent to if grammar G with following productions	1 - N


Q.3. Attempt any 3 of the following.

/a. State and prove Arden's theorem.

b. What is derivation tree? Generate derivation tree for string aabaa using

1 SM

M

Write not on "Halting Problems"

 \mathbf{q}_4

24

What is regular set? Is $L = \{a^{2n} | n \ge 1\}$ regular? Write not on "Operations on language."

1

004 25 - 20 14110

0

 \mathbf{q}_3