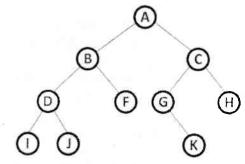
SYCS Sem - IV April - 2014 - Paper / Subject Code: 78901 / Fundamentals of Algotrithm

		$(2 \frac{1}{2})^2$	Hours)	[Total Marks:	75
	N.B. 1) All questions are compulsory.				
	2) Figures to the right indicate ma	ırks.			
	3) Draw suitable diagrams and illu	ustration	ns wherever necessar	'y .'	
	4) Mixing of sub-questions is not a	allowed			
Q. 1	Attempt All the Questions				
					.== =
A)	Choose the correct alternative				(5M)
i)	Time taken by a known algorithm to solve a problem with worse case input gives us the bound				
	a) lower	b)	upper		
	c) both lower and upper		None of these		
		,			
ii)	is an unambiguous specification			problems.	
	a) program		instruction		
	c) algorithm	d)	none of these		
iii)	BST is the abbreviation for				
8	a) Binary Search Tree	b)	Binary Search Time		
	c) Binary Solution Technique	,	None of these		
•		,			
iv)	The matching algorithm on a sequence of			e	
	a) O(nlogn)	,	O(n)		
	c) $O(logn)$	d)	O(2n)		
v)	A path that starts and ends on the same	vertex i	s called		
	a) cycle		tree		
	c) spanning tree	d)	none of these		
	90	·			
B)	Fill in the blanks(rapidly, longest, she	ortest, s	lowly, child, parent,	tree, linked-list)	(5M)
i)	Leaf nodes represent the nodes that do n				
ii)	Pre-order and Post-order traversals are o			data structure.	
iii)	Prim's algorithm is an example of		roblem.		
iv)	The sequential search runs in tim				
v)	The n-log-n function grow a little more	th	an the linear function		
6)					
C)	Explain the following terms in one or	two line	es		(5M)
(i	Big-Omega				
ii)	Depth-first traversal				
iii) iv)	Linear search Binary tree				
v)	Selection algorithms				
v <i>)</i>	Selection argorithms				
Q.2	Attempt the following: (Any THREE)				(1 5 N M)
	- ,		1-1		(15M)
Α	What is Asymptotic analysis of an algor	ւտու E	xpiain.		


Paper / Subject Code: 78901 / Fundamentals of Algotrithm

- B What is divide-and —conquer method of problem solving? Given an example where this method is used.
- C Write a note on method of guessing and confirming.
- D Write the algorithm for printing lines of a file in reverse order.
- E Write a note on commonly used logarithms and summations in algorithmic analysis.
- F Explain how to compare algorithms. Give example.

Q.3 Attempt the following: (Any THREE)

(15M)

- A What is an AVL tree? Explain its characteristics.
- B What is a traversal of a tree? Compute any two such traversals for the following tree.

- C Briefly describe the concept of topological sorting. Give example.
- D Explain with suitable example the adjacency list and adjacency matrix representations of a graph. Give example.
- E What is a shortest path problem? Explain any one algorithm for finding shortest path in a graph.
- F Define graph. Differentiate between directed and undirected graph. Give examples.

Q.4 Attempt the following: (Any THREE)

(15M)

- A What is breadth-first traversal of a tree? Give the algorithm for performing a breadth-first traversal on a tree.
- B Write a note on algorithm design techniques.
- C Briefly explain the Longest Common Subsequence problem.
- D Explain any two problems that can be solved using dynamic programming.
- E What are the elements of greedy algorithm? Explain.
- F Explain the concept of Classification by Implementation Method.

Q.5 Attempt the following: (Any THREE)

(15M)

- A Write a note on median-of-median algorithm.
- B Explain the structure of threaded binary tree? Give suitable example to illustrate the concept.
- C Define algorithm. State its essential characteristics.
- D Write a note on Master theorem. Give example.
- E Write a note on partition based selection algorithms.
- F Write a note on upper and lower bounds of algorithm.