SITHT. Sem- I DIS.

Seat Number			
Duration: 2:30 hrs	734021123	Marks:- 75	
Note:- 1) All questions ar			
2) Figures to the ri	ight indicate maximum marks.		(15)
∩1. Attempt anv 3		0.04(1.1)	(15)
 Explain with diagrar 	n architecture of Linux Kernel.	CO1(U)	
2 Explain Android Sof	ftware architecture with diagram.	CO1(U)	
3. Explain the concept	of Process.	CO1(U)	
4. Explain Unix Proces	ss Management.	CO1(U)	
D	cess Model.	CO1(U)	
5. Explain 5 State Pro	Vindow architecture.	CO1(U)	
6. Draw and Explain v	VIII GOV GI SIMO		
Q2. Attempt any 3			(15)
QZ. Attempt any 5	nagement of Window Operating System.	CO3(U)	
Explain thread man	nagement of Solaris Operating System.	CO3(U)	
2. Explain thread mar	nayomon or octame of processing and	CO3(U)	
 Explain threads Lin What is mutual exc 	lusion?	CO3(R)	
		CO3(U)	
5. Explain thread in A		CO3(U)	
Explain race condit	LIOIT.		
			(15)
Q3. Attempt any 3	Provention	CO4(U)	
Explain deadlock F	Freelinon.	CO4(R)	
2. What is deadlock?	Explain deadlock recovery in details.	CO4(U)	
3. Explain Resource	allocation graph.	CO4(R)	
4. What is Safe State	e and unsafe state of the system?	CO4(U)	
	lgorithm for Deadlock avoidance.	CO4(R)	
6. What is paging?			
			(15)
Q4. Attempt any 3	s I I live a planeithm	CO5(U)	100
 1. Explain different ty 	pes of scheduling algorithm.	CO5(U)	
With the help of ex	xample, explain round robin algorithm.	CO5(R)	
 3. Differentiate between 	een long-term short term scheduler.		
What is difference	between Preemptive & non-preemptive scheduli	CO5(U)	
5 Explain Shortest 5	Job first scheduling algorithm.	CO5(U)	
6. Explain FIFO sche	eduling algorithm with example.	003(0)	
			(15)
Q5. Attempt any 3		CO5(U)	(10)
 Explain different f 	ile access methods.		
Explain different t	ypes of file organization.	CO5(U)	
3. Explain Contiguo		CO5(U)	
4. Explain Linked Li		CO5(U)	
5. Explain Indexed a		CO5(U)	
6 Explain direct me		CO5(U)	